
Mobile Networks and Applications 2 (1997) 259–269 259

A formal method for synthesizing optimized protocol converters
and its application to mobile data networks ∗

Zhongping Tao a,∗∗, Gregor v. Bochmann b and Rachida Dssouli b

a Nortel Technology, P.O. Box 3511, Station C, MS 160, Ottawa, ON, Canada K1Y 4H7
b Université de Montréal, Département d’Informatique et de Recherche Operationnelle, C.P. 6128, Succ. A, Montréal, PQ, Canada H3C 3J7

As mobile information networks are expanding rapidly, we expect to integrate voice, paging, electronic mail and other wireless
information services. Interworking units that perform protocol conversion at the boundaries of different networks will play an important
role. In this paper, we propose an efficient algorithm for constructing optimized protocol converters to achieve interoperability between
heterogeneous data networks. This algorithm first derives constraints from two given protocols, and apply the constraints to channel
specifications, thus removing message sequences that do not contribute to system progress. Then, an optimized converter is generated
from a given service specification, the two protocol specifications and the modified channel specifications. A reduction relation is used
to compare the service specification and the constructed internetworking system in order to deal with the problem of nondeterministic
services. Compared with related works, our method has two advantages: (1) it generates an optimized converter; (2) it can be applied
to the case that the service specification is nondeterministic. The application of the method to mobile networks is given by an example.

1. Introduction

With the expanding of mobile information networks,
new protocols are proposed to address the requirement of
mobile environment. One of the difficulties that arise in
interconnecting different mobile and fixed data networks is
the problem of protocol mismatch [8] – incompatible proto-
cols are used in heterogeneous networks. For example, if a
TCP connection is setup where one endpoint is mobile, the
efficiency of the TCP connection is very poor because of
the higher rate of lost status and data messages caused by
the fading environment over a wireless link [5]. To solve
this problem, a modified version of the transport layer pro-
tocol should be implemented in mobile host and protocol
conversion is necessary at a base station.

The problem of protocol conversion can be explained
informally as follows. Consider two different protocols
A = (A1,A2) and B = (B1,B2) (figure 1). Suppose the
two protocols provide similar services, but differ in certain
details, and we want A1 to communicate with B2 through a
protocol converter C. The converter C receives messages
from one protocol, interprets them, and delivers appropriate
messages to the other protocol in a well-defined order such
that the semantics of the messages does not change. The
protocols and the converter together form an internetwork-
ing system and provide the required services specified by
Sc as shown in figure 2(a). An interconnection between A2

and B1 can be defined similarly.
Protocol conversion is a complex problem since multiple

protocols are considered. It is difficult to design a correct

∗ This work is supported by the IDACOM-NSERC-CWARC Industrial
Research Chair on Communication Protocols. Previous version of this
paper appeared in IC3N ’95, Las Vegas, USA, 1995.

∗∗ This work was completed while the author was in Université de
Montréal.

protocol converter by informal, heuristic methods. A for-
mal approach is a reasonable choice in this area, which
may minimize design errors and simplify design proce-
dures. Several formal methods have been proposed for
protocol conversion in the last several years, which can
also be used to address the protocol mismatch problem in
mobile networks. These methods can roughly be classified
into the following two classes: the bottom-up method and
the top-down method.

A bottom-up method begins with analyzing heuristically
the low level functions of the protocols in order to find out a
design constraint, for example, a message mapping relation
between protocols. The constraint is used to construct a

Figure 1. Two protocols A and B.

Figure 2.

 Baltzer Science Publishers BV

260 Z. Tao et al. / A formal method for synthesizing optimized protocol converters

converter from the Cartesian cross product of A2 and B1

[16,18–20,22]. The common limitations of the bottom-up
method are:

(1) A message mapping relation is required which can only
be obtained heuristically.

(2) It is difficult to validate the correctness of a given mes-
sage mapping relation.

(3) No service requirement of the interworking system is
explicitly used, therefore, the generated converter needs
to be verified against a given service specification.

A top-down method explicitly uses a service specifica-
tion of the interworking system as the semantic constraint.
The main methods are outlined below. In [3], the concept of
a service adapter is proposed for the concatenation of com-
munication services provided by two different protocols.
A service adapter receives a service primitive from the ser-
vice interface of one protocol, interprets it and sends it to
the service interface of the other protocol. The automatic
construction of a protocol converter from two given proto-
col specifications and a service adapter is described in [2].
In [17], a two-stage approach is developed to derive proto-
col converter. In the first stage, a service adapter from the
service specifications of the two protocols is constructed by
using the method proposed in [14]. In the second phase, a
protocol converter is constructed by directly composing the
service adapter and the underlying protocol specifications.
Okumura discussed under what conditions the constructed
system will inherit the properties from the given protocols.
It is possible that the converter constructed in this way
may contain states and transitions that are never executed.
An efficient algorithm is presented in [9] to remove these
states and transitions. The basic idea is to remove from
the underlying protocol entities composed with the service
adapter those service primitives (and related states) that are
unmatched with the service adapter, and those that can be
reached only from the unmatched service primitives; then
the algorithm constructs the strongly connected components
starting with the initial state, and discards the rest of the
machine. The disadvantage of the method discussed above
is that there may not exist a service adapter for two given
protocols even if a protocol converter does exist. Therefore,
the application of the method is limited.

Calvert and Lam proposed a top-down method [6,11],
which uses a safety property and a progress property to
guarantee the correctness of a converter. The algorithm is
divided into two phases. In the first phase, a set of states
and transitions is constructed inductively by searching the
giving protocol entities and the service specification under
the safety constraint. The result is a specification with the
maximum trace set satisfying the safety property. In the
second phase, the states and transitions in the specification
that violate the progress property are iteratively removed.
If the final specification is not empty after the algorithm
terminates, then the converter is obtained. The advantage
of this method is that it does not have the limitation of the

Figure 3. An unoptimized converter.

methods proposed in [9,17], i.e., the algorithm will generate
a protocol converter if it exists. However, there are also
some limitations:

(1) The converter may contain superfluous states and tran-
sitions that do not contribute to the system progress,
and may be harmful for system performance. An ex-
ample given in [6,11] is shown in figure 3, where the
states in the dotted box are superfluous. The converter
can send back an unnecessary acknowledgment to a
protocol even after receiving a data message correctly.
If these states and transitions are not removed, the
system performance will certainly be worse than opti-
mal. Calvert suggested that these states and transitions
should be better removed by hand. However, it is not
clear how to do so in general.

(2) The service specification Sc must be deterministic.

In summary, the protocol conversion methods reported in
the literature are far from satisfactory due to the limitations
discussed above. Nevertheless, we favor top-down method
because of the following reasons:

(1) The service specification is used explicitly; it is not nec-
essary to validate the system against its service speci-
fication after the converter is generated.

(2) It does not require the establishment of a message map-
ping relation between protocols in advance, the most
difficult part of the bottom-up method.

In this paper, we propose an approach to overcome some
of the limitations of the top-down method. We observed
that the channel specifications may contain message se-
quences not contributing to system progress. The top-down
method proposed in [6,11] does not remove these unnec-
essary behaviours when a converter is derived from the
channel specifications and protocol specifications. Our ap-
proach first derives constraints from the given protocols and
applies them to the channel specifications, thus removing
the message sequences of the channel specifications that
do not contribute to system progress. Then an optimized
converter is generated from a given service specification,
the two protocol specifications and the modified channel
specifications. Since the unnecessary states and transitions

Z. Tao et al. / A formal method for synthesizing optimized protocol converters 261

are removed from the first step, this approach may reduce
computation. We use the reduction relation [4,12] to com-
pare the constructed system and the service specification.
This allows the treatment of nondeterministic service spec-
ifications. Compared with related works, our method has
two advantages:

(1) It generates an optimized converter.

(2) It can be applied to nondeterministic service specifica-
tions.

The paper is organized as follows. Section 2 will in-
troduce preliminary definitions and formalize the protocol
conversion problem. In section 3, some theoretical aspects
of our approach will be presented. In section 4, an algo-
rithm for protocol conversion will be developed. An ex-
ample is given to show the application of the algorithm to
mobile network.

2. Definition of the problem

2.1. General definitions

A Finite Labeled Transition System (FLTS) is chosen in
this paper to model communication protocols, services and
channel specifications.

Definition 1 (FLTS) [7]. A nondeterministic FLTS M is a
four-tuple M = (Q, Σ, δ, q0), where:

• Q is a finite set of states.

• Σ is a set of observable events.

• δ is a transition relation, δ :Q× (Σ ∪ {τ})→ 2Q.

• q0 is the initial state.

Intuitively, Q represents the set of possible states of sys-
tem M ; Σ contains the events of which computations may
consist, and δ defines how the state of an FLTS changes
according to its current state and its interaction with the
environment through the execution of events. For states
p, p′ ∈ Q, and event e ∈ Σ, a transition p − e → p′ ∈ δ
means that event e is enabled when the current state is p.
If e is also enabled in the environment, then it may be
executed, causing the state instantaneously to become p′.
An internal event, represented by τ , is distinct from all
events in Σ. Any transition p − τ → p′ ∈ δ is called an
internal transition. Internal transitions occur without the
participation (through interaction) of the environment. The
presence of internal events introduces nondeterministic be-
haviour, which means that the state after a given sequence
of internal events may not be uniquely determined. Non-
determinism may also be introduced by observable events:
for p − e → p′ ∈ δ and p − e → q′ ∈ δ, if q′ 6= p′, then
after executing event e at state p, the next system state can
not be determined for the executed event e. Each event is
considered atomic, that is, no other event can overlap with

an atomic event during the time interval from the initiation
to the termination of the event. Some useful notations are
introduced below. Note that Σo ⊆ Σ is the set of observ-
able events, which interact with a given system environment
modeled by another FLTS.

Σo A set of observable events for a given sys-
tem environment.

q − e→ ∃q′, such that q − e→ q′.
q − e9 There is not a state q′ such that q− e→ q′.
q − τk → q′ State q′ can be reached from state q by ex-

ecuting a sequence of k internal events.
q − σ → qn State qn can be reached from state q by exe-

cuting a sequence of events σ = e1e2 . . . en
(ei ∈ Σ ∪ {τ}).

q − σ → There exist a state qn such that q−σ → qn.
E(M) The set of all execution sequences of M ,

e.g., E(M) = {σ | q0 − σ →}.
q =⇒Σo q

′ There is an execution sequence σ ∈ (Σ −
Σo ∪ {τ})∗ such that q − σ → q′, where
Σo ⊆ Σ.

q = e⇒Σo q
′ There are two execution sequences σ1,σ2 ∈

(Σ − Σo ∪ {τ})∗ and two states q1 and q2

such that q − σ1 → q1, q1 − e → q2 and
q2 − σ2 → q′, in short q1 − σ1eσ2 → q′.

q = t⇒Σo q
′ For a sequence of events t = e1 . . . en,

where ei ∈ Σo, ∃σ0, . . . ,σn ∈ (Σ − Σo ∪
{τ})∗ such that q−σ0e1σ1e2 . . . enσn → q′.
t is called a trace.

q = t;Σo There is not a state q′ such that q = t ⇒Σo

q′.
q = t⇒Σo ∃q′, such that q = t⇒Σo q

′.
TrΣo (M) The set of traces of an FLTS M , that is,

TrΣo (M) = {t | q0 = t⇒Σo } for Σo ⊆ Σ.
p(S) For a given set S, p(S) denotes a power set

of S, i.e., set of subsets of S.
q after t q is a state after trace t, i.e., q0 = t⇒Σo q.
RefΣo (M , q) The refusal set of an FLTS M at state q for

Σo, i.e., RefΣo (M , q) = {e | q = e ;Σo and
e ∈ Σo}.

For two interacting FLTSes, we say that the events that
are executed jointly are directly coupled events. The inter-
action between FLTSes can be specified by assigning the
same name to events that are directly coupled. To avoid
confusion, we assume that all uncoupled events in the inter-
acting FLTSes have a unique name. It is reasonable to make
this assumption since we can rename uncoupled events to
make them unique among the set of events executed by
each FLTS. Directly coupled events may be invisible to the
environment of the system, hence we should model them
by internal events for convenience. For system analysis, we
define the composition of two FLTSes into a single FLTS
as follows.

Definition 2 (Coupled product). A coupled product M1 ||
M2 of two FLTSes M1 = (Q1, Σ1, δ1, p0) and M2 = (Q2,

262 Z. Tao et al. / A formal method for synthesizing optimized protocol converters

Σ2, δ2, q0) is an FLTS M = (Q, Σ, δp, (p0, q0)) such that:

• Q is a subset of Q1 ×Q2; each element is of the form
(p, q), where p ∈ Q1, q ∈ Q2;

• Σ = (Σ1 ∪ Σ2)− (Σ1 ∩ Σ2);

• (p0, q0) ∈ Q is the initial state;

• δp is the transition relation defined on Q such that for
p, p′ ∈ Q1, q, q′ ∈ Q2:

(1) (p, q)− e1 → (p′, q) if p− e1 → p′ and e1 ∈ (Σ1 −
Σ2) ∪ {τ};

(2) (p, q)− e1 → (p, q′) if q − e2 → q′ and e2 ∈ (Σ2 −
Σ1) ∪ {τ};

(3) (p, q)− τ → (p′, q′) if p− e → p′, q − e → q′ and
e ∈ Σ1 ∩ Σ2;

(4) for other cases, no transition is defined.

In some cases, we need to compose two FLTSes that
do not directly interact with each other. This can be done
by computing the so-called Cartesian cross product, written
M1×M2, which is identical to the coupled productM1||M2

in the case that Σ1 ∩ Σ2 = ∅.

Definition 3 (# product). A # product M1 # M2 of two
FLTSes M1 = (Q1, Σ1, δ1, p0) and M2 = (Q2, Σ2, δ2, q0) is
an FLTS M = (Q, Σ, δp, (p0, q0)) where:

• Q is a subset of Q1 ×Q2;

• Σ = Σ1 ∪ Σ2 is the set of events;

• (p0, q0) is the initial state;

• δp is the transition relation defined on Q such that for
p, p′ ∈ Q1 and q, q′ ∈ Q2:

(1) (p, q)− e1 → (p′, q) if p− e1 → p′ and e1 ∈ (Σ1 −
Σ2) ∪ {τ};

(2) (p, q)− e2 → (p, q′) if q − e2 → q′ and e2 ∈ (Σ2 −
Σ1) ∪ {τ};

(3) (p, q)− e → (p′, q′) if p − e → p′ and q − e → q′

with e ∈ Σ1 ∩ Σ2;

(4) for other cases, no transition is defined.

Compared with the coupled product, the only difference
is that each directly coupled event e ∈ Σ1∩Σ2 in # product
is still observable.

Definition 4 (Strong bisimulation relation) [15]. A binary
relation ξ on states is a strong bisimulation if for each
〈p, q〉 ∈ ξ and each event e ∈ Σ ∪ {τ}, the following two
conditions are true:

(1) whenever p− e→ p′ then there is a state q′ such that
q − e→ q′ and (p′, q′) ∈ ξ;

(2) whenever q − e→ q′ then there is a state p′ such that
p− e→ p′ and (p′, q′) ∈ ξ.

We write p ∼= q if (p, q) ∈ ξ.
Intuitively, a bisimulation can be thought of as a match-

ing between states that have the property that if two states
are matched then each execution sequence starting from one
state must be matched by the execution sequence starting
from the other state.

Definition 5 (Strong bisimulation equivalence of two
FLTSes) [15]. Given two FLTSes M1 = (Q1, Σ1, δ1, p0) and
M2 = (Q2, Σ2, δ2, q0), M1 and M2 are strong bisimulation
equivalent if there is a strong bisimulation relation ξ which
contains 〈p0, q0〉, written M1

∼= M2.

Definition 6 (Reduction relation). Given two FLTSes
M1 = (Q1, Σ1, δ1, p0) and M2 = (Q2, Σ2, δ2, q0), M1 and
M2 satisfy reduction relation for Σo ⊆ Σ1 ∪ Σ2, written
M1 ∠Σo M2, if the following conditions are satisfied:

(1) TrΣo (M1) ⊆ TrΣo (M2).

(2) For any t ⊆ TrΣo (M1) ∩ TrΣo (M2) and any q after
t in M1, there is a state p after t in M2 such that
RefΣo (M1, q) ⊆ RefΣo (M2, p).

This definition is similar to the reduction relation defined
in [4,12]. The difference is that we define the traces and
rejected events by using Σo, instead of Σ1 and Σ2. This
definition can be explained by two concepts: the first is the
safety property – the set of all traces of M1 is limited to
the set of traces of M2; the second is the progress property:
placed in any environment whose interface with M1 or M2

is defined by Σo, an event after a trace that is rejected by
M1 must also be rejected by M2. The progress property
implies that M1 can not deadlock when M2 can not dead-
lock. M1∠Σo M2 iff M1 and M2 satisfy the safety property
and the progress property.

Definition 7 (Submachine). An FLTS M ′ = (Q′, Σ′, δ′, q′0)
is a submachine of another FLTS M = (Q, Σ, δ, q0) if
(a) Q′ ⊆ Q, (b) Σ′ ⊆ Σ, (c) δ′ ⊆ δ, and (d) q′0 = q0.

2.2. Formal definition of protocol conversion

The protocol conversion problem informally explained
in the Introduction can be formally defined by the following
expression:

A1 || Cha || C || Chb ||B2 ∠ΣS Sc, (1)

where Cha and Chb denote the channels between the pro-
tocol entities as shown in figure 1, and ΣS is the set of
observable events of Sc. Since A1, Cha, Chb and B2 are
given, this expression can be represented by M0 ||C∠ΣS Sc,
whereM0 = (A1||Cha)×(Chb||B2) as shown in figure 2(b).

In addition, the converter should satisfy the following
requirements:

(1) The converterC should have no unnecessary transitions
and states.

Z. Tao et al. / A formal method for synthesizing optimized protocol converters 263

(2) The converter C should work in such a way that A1

communicates with C as if A1 communicates with A2,
and B2 communicates with C as if B2 communicates
with B1. Therefore, the following condition should be
satisfied at the service interface:

Sc∠Σa1
A1 ||Cha ||A2 and Sc∠Σb2

B1 ||Chb ||B2. (2)

Definition 8 (Maximum solution). Given M0 = (Q, Σ0, δ,
p0) and Sc = (QS, ΣS, δS, q0), a converter C is a maximum
solution if for any other converter C′ satisfying M0 ||C′∠ΣS

Sc, we have TrΣo (C′) ⊆ TrΣo (C), where Σo = Σ0 − ΣS is
the set of events of C and C′.

A maximum solution is not exactly what we want, since
it may contain superfluous states and transitions. Protocol
conversion often deals with well-designed protocols that
have already been used in existing networks. It is reason-
able to assume that these protocols have no superfluous
states and transitions, when considered alone.

To construct an optimized deterministic protocol con-
verter, our basic argument is that if the converter C does not
do more than A2 and B1 can do, i.e., TrΣa2

(C) ⊆ TrΣo (A2)
and TrΣb1

(C) ⊆ TrΣo (B1), where Σa2 is the set of events of
A2 and Σb1 is the set of events of B1, then C will have no
transitions that do not contribute to system progress. Ac-
cording to the discussion above, we formalize the concept
of optimized converters as follows.

Definition 9 (Optimized converter). A deterministic con-
verter C is optimized if C has maximum sequences (in
the sense of a maximum solution defined above) under the
following condition: TrΣa2

(C) ⊆ TrΣo (A2) and TrΣb1
(C) ⊆

TrΣo (B1).

3. Foundations of our method

3.1. Refusal graph

To deal with nondeterministic service specifications, we
will introduce the concept of refusal graph, shortly Rgraph.
The following definition is used when we define an Rgraph
for a given FLTS.

Definition 10 (After set). Given an FLTSM = (Q, Σ, δ, q0)
and Σo ⊆ Σ, we define the after set of a state p ∈ Q as
AΣo (p) = {p′ | p =⇒Σo p

′}.

The After set AΣo (p) intuitively describes all the reach-
able states from a state p by executing zero, one or more
events e ∈ Σ− Σo ∪ {τ}.

Definition 11 (Refusal graph). An Rgraph is a 5-tuple
GΣo = (S, Σo, δ,R, s0), where:

• S is a finite set of states.

• Σo is a set of events.

• δ :S × Σo → S is a transition relation.

• R :S → p(p(Σo)) is a mapping from a state s ∈ S to a
set of subsets of Σo.

• s0 ∈ S is the initial state.

This definition is similar to the definition of an FLTS.
However, there are two differences: first, from the defini-
tion of the transition relation δ :S × Σo → S, an Rgraph is
deterministic; second, there is a set of subsets of Σo asso-
ciated with each state s in S, written R(s).

Definition 12 (Correspondence between an FLTS and an
Rgraph). Given an FLTS M = (Q, Σ, δ, q0) and Σo ⊆ Σ, we
say that GΣo (M) = (S, Σo, δ′,R, s0) is the corresponding
Rgraph of M iff:

(1) S = {si | si = {q ∈ Q | q0 = t⇒Σo q}, t ∈ TrΣo (M)}.

(2) δ′ is the transition relation: ∀si, sj ∈ S and ∀e ∈ Σo,
we have sj − e→ si iff si =

⋃
p′∈Ψ AΣo (p′), where

Ψ = {p′ | ∃p ∈ sj and p− e→ p′}.

(3) ∀si ∈ S, R(si) = {RefΣo (M , p) | p ∈ si}.

(4) s0 = AΣo (q0).

In this definition, a set of states in M is considered as one
state in GΣo (M). This is similar to the method given in [13]
for transforming a nondeterministic finite state machine to
a trace equivalent deterministic finite state machine, except
that the refusal set is ignored in [13]. By ignoring the set of
refusal sets for each state in GΣo (M) we get a deterministic
FLTS, denoted as PΣo (M).

Example 1. For the given FLTS M specified by fig-
ure 4(a), where Σo = {c, d, b}, the obtained refusal graph
is shown in figure 4(b). In figure 4(b), we have the shad-
owed boxes: s0 = AΣo (0), s1 = AΣo (3), s2 = AΣo (4),
s3 = AΣo (6). The refusal sets are shown beside each state
of the Rgraph.

3.2. Existence of protocol converter

Our goal is to construct a deterministic converter C such
that M0 || C ∠Σo Sc. This can be implemented in two
steps: first, we compute M0 # GΣS (Sc) to obtain all exe-
cution sequences that satisfy the safety property because of
TrΣS (M0 #GΣS (Sc)) ⊆ TrΣS (Sc). Second, since some behav-
iours in M0 #GΣS (Sc) may not satisfy the progress property,
we need to prevent them from happening for avoiding dead-
locks. To do so, we first define the concept of a machine
with grouped states.

Definition 13 (Machine with grouped states (MGS)). Given
an FLTS M = (Q, Σ, δ, q0), we define a correspond-
ing machine with grouped states, written MGSΣo (M) =
(S, Σ, δ′, s0q0

), where:

264 Z. Tao et al. / A formal method for synthesizing optimized protocol converters

Figure 4. (a) An FLTS M . (b) The Rgraph of M .

(1) S =
⋃

si, where si ∩ sj = ∅ for i 6= j; each si ∈ S
represents a group of states si = {siq | q ∈ si}, where
si is defined in the corresponding Rgraph GΣo (M).

(2) For any si, sj ∈ S, and any siq ∈ si, sjp ∈ sj , we have
siq − e → sjp in MGSΣo (M) iff q − e → q in M for
e ∈ Σ ∪ {τ}.

MGSΣo (M) is different from GΣo (M) in four aspects:
first, the state space is different; second, the set of events is
Σ, instead of Σo; third, the transition relation in MGSΣo (M)
is defined by using the states in S; fourth, there are no re-
fusal set explicitly associated with the states in MGSΣo (M).
An important relationship between MGSΣo (M) and M is
stated by the following lemma.

Lemma 1. For any FLTS M = (Q, Σ, δ, p) and any Σo ⊆
Σ, MGSΣo (M) ∼= M .

To implement the two-step construction, we face a fun-
damental problem: what behaviour in M0 can be executed
through the interaction with a deterministic converter C?
To answer this question, we have the following important
result.

Lemma 2. Given M0 = (Q0, Σ0, δ0, p0), Sc = (QS, ΣS, δS,
q0S) and Σo = Σ0 − ΣS, let H be a submachine of
MGSΣo (M0 # GΣS (Sc)), H ∼= M0 # PΣo (H) iff H satisfies
the following two conditions:

(1) For each state si(p,s) ∈ H , where p is a state of M0 and
s is a state of GΣS (Sc), and ∀e ∈ ΣS ∪ {τ}, p− e→ p′

in M0 implies there must be a state si(p′ ,s′) in H such
that si(p,s) − e→ si(p′ ,s′) .

(2) For each si(p,s) and state p in M0 such that (p− e →)
∧ (si(p,s) − e 9) then for any state si(p′ ,s′) , we have
si(p′ ,s′) − e9.

The first condition implies that if an event in ΣS ∪ {τ}
occurs following an execution sequence in E(H), then the
extended execution sequence must remains in E(H), pro-
vided that the extended execution sequence is in E(M0).
The second condition means that for a given si(p,s) , if an
event e ∈ Σo is enabled in M0 at state p, but is disabled at
state si(p,s) in H , then all states in si should disable event e.
The result of this lemma shows that the interaction be-
tween M0 and PΣo (H) behaves exactly like what H does
if H satisfies the two conditions. We call this property of
H well-behaved with respect to M0, Σo and Sc.

Theorem 1. GivenM0 = (Q0, Σ0, δ0, p0), Sc = (QS, ΣS, δS,
q0S) and Σo = Σ0 − ΣS, we have:

(1) If C = (Qc, Σo, δc, q0c) is a deterministic solution such
that M0 ||C∠ΣS Sc then there exists a submachine H of
MGSΣo (M0#GΣS (Sc)) having the well-behaved property
with respect to M0 and Sc and satisfying H ∠ΣS Sc.

(2) If H is a submachine of MGSΣo (M0 #GΣS (Sc)) having
the well-behaved property with respect to M0, Σo and
Sc and satisfying H ∠ΣS Sc then PΣo (H) is a solution
such that M0 # PΣo (H)∠ΣS Sc.

Theorem 1 implies that we can construct a protocol con-
verter by finding a submachineH of MGSΣo (M0#GΣS (Sc)),
which has the well-behaved property with respect to M0,
Σo and Sc and satisfies H ∠ΣS Sc.

Z. Tao et al. / A formal method for synthesizing optimized protocol converters 265

3.3. Optimization

As we have discussed in section 2.2, the maximum so-
lution satisfying the condition in theorem 1 is not exactly
what we want, since it may contain unnecessary states and
transitions. To solve this problem, we have the following
two basic observations:

(1) Some superfluous transitions and states in the protocol
converter are due to the property of the channel’s be-
haviour: the channel is able to transmit any messages
(including the unnecessary ones). So the unnecessary
message sequences are also included in M0. How-
ever, the existing algorithms have not used any effec-
tive measure to remove them [3,11,14].

(2) Some superfluous transitions and states may be due to
superfluous transitions and states in the given proto-
cols. We will not deal with the problems due to unop-
timized protocols. Therefore, we make the assumption
that there are no superfluous transitions and states in
the given protocols.

Based on the observations above, the following theorem
describes the basic idea of how to generate an optimized
protocol converter.

Theorem 2. Given two protocols A = (A1,A2) and B =
(B1,B2), a global service specification Sc, and channel
specifications Cha and Chb, let Cha′ = Cha #PΣa2−ΣS (A2),
Chb′ = Chb # PΣb1−ΣS (B1), M = (A1 || Cha)× (Chb ||B2)
and M0 = (A1 || Cha′) × (Chb′ || B2), if there exists a
deterministic converter C′ such that M || C′ ∠ΣS Sc, then:

(1) There is a maximum solution C such that M0||C∠ΣS Sc.

(2) C is an optimized converter for the given protocols A,
B and service specification Sc.

This theorem implies that an optimized converter can
be obtained by first obtaining constraints from the given
protocol entities, and removing those message sequences by
using the constraints from the given channel specifications
that may result in superfluous states and transitions in the
converter, then the modified channel specifications are used
for constructing an optimized converter.

4. Algorithm for protocol conversion

4.1. The algorithm

Based on theorems 1 and 2, it is easy to develop an
algorithm for protocol conversion. The following algo-
rithm is divided into five steps. In step 1, the constraints
for optimization are derived from the given protocol enti-
ties according to theorem 2, and are applied to the chan-
nel specifications. M0 is obtained by composing the pro-
tocol specifications and the modified channel specifica-
tions. In the second step, the execution sequences in M0

that violate the safety property are removed by computing
M ′0 = M0 #GΣS (Sc). The states and transitions that do not
satisfy the first condition of lemma 2 are deleted by mark-
ing them Bad States (BD). In the third step, we construct
a submachine H ′ of MGSΣo (M ′0) such that the states and
transitions that violate the second condition of lemma 2 are
removed. In step 4, we construct a submachine H of H ′

such that the states and transitions that do not satisfy the-
orem 1 are marked out, and the converter is obtained in
step 5 by computing C = PΣo (H).

Algorithm Conversion

/* Input: the protocols A = (A1,A2) and B = (B1,B2),
the channel Cha of protocol A, the channel
Chb of protocol B, service specification Sc =
(QS, ΣS, δS, q0S), and Σo = Σ0 − ΣS.

/* Output: an optimized protocol converter C.
Begin

Step 1:

(1) Derive the constraints: A′2 = PΣa2−ΣS (A2) and B′1 =
PΣb1−ΣS (B1).

(2) Imposing the constraints to the channel specifications:
Cha′ = Cha #A′2 and Chb′ = Chb #B′1.

(3) Construct M0 = (A1 || Cha′)× (Chb′ ||B2).

Step 2:

Compute M ′0 = M0 #GΣS (Sc) and mark any state (p, s)
of M ′0 BS (“Bad State”) if there is a state p′ in M0

such that p− e→ p′ for e ∈ ΣS ∪ {τ}, but there is not
a state s′ in GΣS (Sc) such that s−e→ s′. The result is
denoted as M ′0 = (Qp, Σp, δp, (p0, s0)), where s0 is the
initial state of GΣS (Sc) and p0 is the initial state of M0.

Step 3:

Create s0 = {s0(p,s′
k

)
| (p, s′k) ∈ AΣo ((p0, s′0))} and mark

it TP (“To be Processed”).
For ∀e ∈ ΣS ∪ {τ}, ∀s0(p,s′

k
)
∈ s0 and ∀s0(p′ ,s′m)

∈ s0,
create a transition labelled e from s0(p,s′

k
)

to s0(p′ ,s′m)

whenever (p, s′k)− e→ (p′, s′m) exists in M ′0.
Do the following while there is an si marked TP:

(1) If there is a state si(p,s′
k

)
∈ si marked BS then mark

si BS; otherwise for ∀e ∈ Σo do the following:

(a) Compute

si(e) =
⋃

si
(p,s′

k
)
∈si

{
AΣo

(
(p′, s′m)

)
| (p, s′k)− e

→ (p′, s′m) ∈ δp
}
.

(b) If there is a state (p′′, s′h) ∈ si(e) marked BS
then remove all transitions labelled e from any
state si(p,s′

k
)
∈ si; otherwise do the following:

(i) if si(e) is not empty and there is no previ-
ously created sj containing exactly all the
state pairs in si(e), do the following:

266 Z. Tao et al. / A formal method for synthesizing optimized protocol converters

• Create such an sj containing all the
state pairs in si(e), i.e., sj = {sj(p,s′

k
)
|

(p, s′k) ∈ si(e)}.

• For ∀e′ ∈ ΣS ∪ {τ}, ∀sj(p,s′
k

)
∈ sj and

∀sj(p′ ,s′m)
∈ sj , create a transition la-

belled e′ from sj(p,s′
k

)
to sj(p′ ,s′m)

when-

ever (p, s′k)−e→ (p′, s′m) exists in M ′0.

• Mark sj TP;

(ii) For ∀si(p,s′
k

)
∈ si and ∀sj(p′ ,s′m)

∈ sj , cre-
ate a transition labelled e from si(p,s′

k
)

to

sj(p′ ,s′m)
whenever (p, s′k) − e → (p′, s′m)

exists in M ′0.

(2) Change the mark of si from TP to PD (“Proc-
esseD”).

Step 4:
Repeat

(a) For each sj marked BS in H ′ and any state sj(p′ ,s′m)
∈

sj , if there is an si in H ′ and any state si(p,s′
k

)
∈ si such

that si(p,s′
k

)
− e → sj(p′ ,s′m)

then remove all transitions

labelled e from any state si(p,s′
k

)
∈ si.

(b) For each si and each state si(p,s′
k

)
∈ si, if there is no

Rf ∈ R(s′k) such that RefΣS (H ′, si(p,s′
k

)
) ⊆ Rf then mark

si BS.

Until no more si has been marked BS in the last Repeat.
Step 5:

If s0 is marked BS then report “no solution”, otherwise
compute C = PΣo (H). (The states marked BS do not
belong to H .)

End

Since M0 and Sc are assumed to be finite, this algorithm
will eventually terminate. It is obvious that the computa-
tional complexity of step 3 is exponential in the worst case.
However, according to our experience, the number of states
of MGSΣo (M ′0) is of the same order as M ′0 for many ap-
plications. Step 4 of the algorithm can be implemented
more efficiently by recursively checking only the states in
which at least one transition is removed by the most recent
manipulations of the algorithm.

Theorem 3. If there exists a deterministic converter C′

such that A1 || Cha || C′ || Chb ||B2 ∠ΣS Sc, then algorithm
conversion will generate an optimized protocol converter
C such that A1 || Cha || C || Chb ||B2 ∠ΣS Sc.

This theorem shows that our algorithm will always gen-
erate a protocol converter if it exists. Hence, our method
has not the limitation of the methods using a service adapter
[3,14,17]. In the following section, we will give an example
to show the application of our method to mobile networks.
To simplify the presentation, we use a deterministic service
specification Sc. An example of using a nondeterministic
service specification can be found in [21].

4.2. An example

In this section, we apply our algorithm to protocol con-
version for mobile data networks. The configuration with
a wireless channel between a base station and a mobile ter-
minal is assumed asymmetric. The asymmetry is due to
the fact that the mobile terminal has limited resources and
smaller processing capability than the base station. In order
to accommodate this asymmetry, it is propose in [1] that
we should put as much intelligence as possible in terms of
processing in the base stations and make the mobile termi-
nals relatively simple:

(1) Since timers consume a lot of processing resources,
they should always be implemented at the base station
regardless of whether it is transmitting or receiving.

(2) The intelligence in terms of processing status messages
and making decisions is implemented in base stations.
Thus, a time-out in base station may trigger sending
status messages.

In this example, the protocol P = (P1,P2) used by the
mobile terminal and the base station is shown in figure 5.
The “put” and “get” events constitute the interface with
the user. The events labelled with τ are internal events
that model time-out or message loss. Other events are cou-
pled with the channels. The protocol attaches a one bit
sequence number to each message transmitted. Sending
data messages are denoted as di (where i = 1, 2), and re-
ceiving data messages are denoted as Di. For each received

Figure 5. The P protocol.

Z. Tao et al. / A formal method for synthesizing optimized protocol converters 267

Figure 6. The N protocol.

Figure 7. The channel specifications.

Figure 8. The service specification Sc.

Figure 9. The generated constraints in the first step.

data message Di, the receiver returns an acknowledge mes-
sage Ai. If the sender received an acknowledgment ai
whose sequence number does not match the sequence num-
ber of the last-sent data message, the message will be ig-
nored. In order to simplify our example, a non-sequence
protocol N = (N1,N2) with reliable channel is used be-
tween the base station and a fixed terminal, as shown in
figure 6. The “putn” and “getn” events constitute the in-
terface with the user. Sending data messages are denoted
as d, and receiving data messages are denoted as D. For
each received data message D, the receiver returns an ac-

Figure 10. The modified channel specifications Chp′ and Chn′.

Figure 11. The specification of GΣS (Sc).

knowledge message A. Both protocols guarantee that a
message will be delivered exactly once. The two channel
specifications are depicted in figure 7. The desired service
specification is shown in figure 8. Figure 9 shows the con-
straints, P ′2 and N ′1, obtained from the two protocol entities
P2 and N1, respectively. The modified channel specifica-
tions, Chp′ = Chp # P ′2 and Chn′ = Chn # N ′1, are given
in figure 10. Figure 11 is the refusal graph for the service
specification. Since M0 and MGSΣo (M0 #GΣS (Sc)) are too
big to be presented due to limitation of space, we do not
show them in this paper. Figure 12(a) is the optimized
converter C constructed by our algorithm. For compari-
son, figure 12(b) shows an unoptimized protocol converter
obtained by the algorithm proposed in [6,11], in which six
states and twenty four transitions are superfluous.

5. Conclusions

In this paper we have defined the concept of an opti-
mized protocol converter, and proposed a top-down algo-
rithm to construct optimized converters from a given ser-
vice specification and two protocol specifications. The ba-
sic idea is to derive constraints from the protocol speci-
fications and impose the constraints on the channel spec-
ifications. The refusal graph and a reduction relation are
used to deal with the problem of nondeterministic services.
Compared with related works, our method has the follow-
ing advantages: (1) it generates an optimized converter;
(2) The service specification may be nondeterministic.

Appendix

Proof of lemma 1. Construct a relation ζ = {〈p, sip〉 | p
is a state of M , sip is a state of MGSΣo (M)}, then for any
〈p, sip〉 ∈ ζ, p − e → p′ in M implies sip − e → sjp′
in MGSΣo (M); and sip − e → sjp′ implies p − e → p′

according to definition 13. Hence 〈p′, sjp′ 〉 ∈ ζ. Therefore,
ζ is a strong bisimulation relation and M ∼= MGSΣo (M). �

268 Z. Tao et al. / A formal method for synthesizing optimized protocol converters

(a) The optimized converter (b) An unoptimized converter

Figure 12.

Proof of lemma 2.
(⇒) Assume that H ∼= M0 # PΣo (H), then there is a

strong bisimulation relation ζ over (States of H) × (States
of M0 # PΣo (H)) such that 〈s0(p0,s′0)

, (p0, s0)〉 ∈ ζ according

to definition 5. It is easy to prove that 〈si(q,s′
k

)
, (p, sj)〉 ∈ ζ

if i = j and p = q. If there is a state si(p,s′
k

)
in H , where p

is a state of M0 and s′k is a state of PΣS (Sc), and an event
e ∈ ΣS, such that p − e → p′ in M0 but si(p,s′

k
)
− e 9 in

H (note that this is impossible for e ∈ Σo ∪ {τ}), then
at state (p, si) of M0 # PΣo (H), we have (p, si) − e →
according to the # product, where si is a state of PΣo (H).
Therefore, 〈si(p,s′

k
)
, (p, si)〉 /∈ ζ. This is a contradiction with

H ∼= M0 # PΣo (H). Hence, the first condition is true.
If (p−e→)∧ (si(p,s′

k
)
−e9) and there is a state si(p′ ,s′m)

in H such that si(p′ ,s′m)
− e →, then (p, si)− e → must be

true in M0 #PΣo (H) according to the # product. Therefore,
〈si(p,s′

k
)
, (p, si)〉 /∈ ζ. This is also a contradiction with H ∼=

M0 # PΣo (H). Hence, the second condition is true.
(⇐) Assuming H is well-behaved. We can construct a

relation ζ over (States of H) × (States of M0 # PΣo (H))
such that 〈si(q,s′

k
)
, (p, sj)〉 ∈ ζ iff i = j and q = p. Obvi-

ously 〈s0(p0,s′0)
, (p0, s0)〉 ∈ ζ, where s′0 and s0 are the ini-

tial states of PΣS (Sc) and PΣo (H), respectively. For any
〈si(p,s′

k
)
, (p, si)〉 ∈ ζ, under the assumption that H is well-

behaved we have the following result: there is a state
(p′, sn) such that (p, si) − e → (p′, sn) in M0 # PΣo (H) iff
there is a state sn(p′ ,s′m)

such that si(p,s′
k

)
− e → sn(p′ ,s′m)

in

H according to the # product. So, 〈sn(p′ ,s′m)
, (p′, sn)〉 ∈ ζ.

Therefore, we have H ∼= M0 # PΣo (H). �

Proof of theorem 1. (1) If there is a deterministic so-
lution C such that M0 || C ∠ΣS Sc, let H ′ = M0 # C,
then we have H ′ ∠ΣS Sc, and H ′ is well-behaved from
lemma 2. Let H ′′ = MGSΣo (H ′) and H ′′′ = MGSΣo (M0 #
PΣS (Sc)). We construct a submachine H from H ′′′ such
that TrΣo (H) = TrΣo (H ′′) (this can always be satisfied

since M0 || C ∠ΣS Sc), and we construct a strong bisim-
ulation relation ζ over (States of H ′′) × (States of H)
such that 〈si(p,c) , s

′
k(q,s′′n)

〉 ∈ ζ iff p = q and there is a

trace t ∈ TrΣo (H) ∩ TrΣo (H ′′) such that s0 − t → si
in PΣo (H ′′) and s′0 − t → s′k in PΣo (H). For any
〈si(p,c) , s

′
k(p,s′′n)

〉 ∈ ζ and si(p,c) − e → sj(p′ ,c′) , we have

s′k(p,s′′n)
− e → s′m(p′,s′′

h
)

according to H ′ ∠ΣS Sc and the

product. If e /∈ Σo, then i = j and k = m, hence,
〈sj(p′ ,c′) , s

′
m(p′ ,s′′

h
)
〉 ∈ ζ. If e ∈ Σo, then there must be a

trace t ∈ TrΣo (H) ∩ TrΣo (H ′′) such that s0 − t → si in
PΣo (H ′′) and s′0−t→ s′k in PΣo (H) according to the # prod-
uct, hence, 〈sj(p′ ,c′) , s

′
m(p′,s′′

h
)
〉 ∈ ζ. Therefore, ζ is a strong

bisimulation relation and we have H ∼= H ′′. Because of
lemma 1 we have H ′ ∼= H ′′ since H ′′ = MGSΣo (H ′).
Therefore, H ∼= H ′. From H ′ ∠ΣS Sc and H ∼= H ′, we
have H ∠ΣS Sc. H is well-behaved because H ′ is well-
behaved.

(2) If such an H exists, according to lemma 2, M0 #
PΣo (H) ∼= H . Hence, M0 || PΣo (H) ∼= H|Σo where H|Σo

denotes the FLTS derived from H by replacing every event
e ∈ Σo with an internal event τ . From the condition H ∠ΣS

Sc, we have M0 || PΣo (H) ∠ΣS Sc. �

Proof of theorem 2. Assuming there is a converter C′

such that M || C′ ∠ΣS Sc, then there is a submachine H of
MGSΣo (M#GΣS(Sc)) satisfying the conditions of theorem 1,
where Σo = Σ0 − ΣS. We can construct an FLTS H ′ from
PΣa2−ΣS (A2) # H # PΣb1−ΣS (B1) such that H ′ ∠ΣS Sc (note
the conditions Sc ∠Σa1−Σo A1 || Cha || A2 and Sc ∠Σb2−Σo

B1 ||Chb ||B2 in section 2.2). Since E(H) is well-behaved
with respect to E(M0) and Σo, from the construction of
H ′ and the proof of theorem 1, E(H ′) is well-behaved
with respect to E(M0) and Σo as well. Therefore, PΣo (H ′)
satisfies M0 || PΣo (H ′) ∠ΣS Sc. This implies that there is
a solution C satisfying (A1 || Cha) || PΣa2−ΣS (A2) # C′ #
PΣb1−ΣS (B1) || (Chb || B2) ∠ΣS Sc. Hence, C is a solution
satisfying (A1 || Cha′) || C || (Chb′ ||B2) ∠ΣS Sc.

Z. Tao et al. / A formal method for synthesizing optimized protocol converters 269

From the definition of M0, we have TrΣa2
(C) ⊆ TrΣo (A2)

and TrΣb1
(C) ⊆ TrΣo (B1). Hence, C is an optimized con-

verter satisfying M0 || C ∠ΣS Sc. �

Proof of theorem 3. The algorithm will generate a solution
when s0 is not marked BS. Hence, we need to show that if
there is a solution C′, then s0 will not be marked BS.

(1) Let M ′′0 = MGSΣo (M0) and H ′ = M ′′0 # C′. Since
C′ is a solution, H ′ is not empty, and s0 is included in H ′.
According to lemma 2, H ′ satisfies all conditions of theo-
rem 1. Clearly, step 2, step 3 and step 4(a) will not remove
any si and transitions of H ′ since H ′ is well-behaved.

(2) Because H ′∠ΣS Sc, all of the transitions contained in
H ′ will not be removed by step 4(b). Hence, if there is a
deterministic solution C′ satisfying M0 ||C′∠ΣS Sc, then the
algorithm will generate a solution C satisfying M0 || C∠ΣS

Sc. From step 1 and theorem 2, C is optimized. �

References

[1] E. Ayanoglu et al., AIRMAIL: A link-layer protocol for wireless
networks, Wireless Networks 1 (1995) 47–60.

[2] G. v. Bochmann, Deriving protocol converters for communication
gateways, IEEE Transactions on Communications 38(9) (September
1990).

[3] G. v. Bochmann et al., Design principles for communication gate-
ways, IEEE Journal on Selected Areas in Communications 8(1) (Jan-
uary 1990).

[4] E. Brinksma, G. Scollo and C. Steenbergen, LOTOS specification,
their implementations, and their tests, in: Proceedings of IFIP Work-
shop PSTV (1987).

[5] K. Brown and S. Singh, Network, architecture and communication
protocols for mobile computing (1996).

[6] K.L. Calvert and S.S. Lam, Deriving a protocol converter: A top-
down method, in: Proceedings of ACM SIGCOMM ’89.

[7] R. De Nicola, Extensional equivalences for transition systems, Acta
Informatica 24 (1987).

[8] P.E. Green Jr, Protocol conversion, IEEE Transactions on Commu-
nications 34(3) (March 1986).

[9] D.M. Kristol et al., Efficient gateway synthesis from formal spec-
ifications, in: Proceedings of ACM SIGCOMM ’91. See also
IEEE/ACM Transactions on Networking 1(2) (April 1993).

[10] S.S. Lam, Protocol conversion, IEEE Transactions on Software En-
gineering 14 (March 1988).

[11] S.S. Lam and K.L. Calvert, Formal methods for protocol conversion,
IEEE Journal on Selected Areas in Communications 8(1) (January
1990).

[12] G. Leduc, A framework based on implementation relations for im-
plementing LOTOS specifications, Computer Networks and ISDN
Systems 25 (1992).

[13] H.R. Lewis, Elements of the Theory of Computation (Prentice-Hall,
Englewood Cliffs, NJ, 1981) pp. 59–62.

[14] P. Merlin and G. v. Bochmann, On the construction of submodule
specifications and communication protocols, ACM TOPLAS 5(1)
(1983).

[15] R. Milner, Communication and Concurrency (Prentice-Hall, Engle-
wood Cliffs, NJ, 1989).

[16] K. Okumura, A formal protocol conversion method, in: Proceedings
of ACM SIGCOMM ’86.

[17] K. Okumura, Generation of proper adapters and converters from
a formal service specification, in: Proceedings of IEEE INFO-
COM ’90.

[18] M. Rajagopal et al., Synthesizing a protocol converter from ex-
ecutable protocol traces, IEEE Transactions on Computers 40(4)
(April 1991).

[19] J.C. Shu and M.T. Liu, A synchronization model for protocol con-
version, in: Proc. IEEE INFOCOMM ’89, Ottawa, Canada (1989).

[20] J.C. Shu and M.T. Liu, An approach to indirect protocol conversion,
Computer Networks and ISDN Systems 21 (1991).

[21] Z.P. Tao, A formal method for the design of real-time communicating
subsystems and controllers, Ph.D. Thesis, Université de Montréal.

[22] Y.W. Yao, W.S. Chen and M.T. Liu, A modular approach to con-
structing protocol converters, in: Proc. IEEE INFOCOM ’90, San
Francisco, CA (1990).

Zhongping Tao received B.S. and M.S. degrees
in telecommunications from HuaZhong University
of Science and Technology, China, and a Ph.D.
in computer science from the University of Mon-
treal. He is currently employed by the Wireless
Networks Division of Nortel Technology, Ottawa.
His research interests include network architecture
and internetworking, signaling systems, and proto-
cols for mobile networks and broadband networks.

Gregor v. Bochmann is a professor at the University of Montreal since
1972 and holds the Hewlett-Packard-NSERC-CITI chair of industrial re-
search on communication protocols. He is also one of the scientific di-
rectors of the Centre de Recherche Informatique de Montreal (CRIM).
He has worked in the areas of programming languages, compiler design,
communication protocols, and software engineering and has published
many papers and some books in these areas. He has also been actively
involved in the standardization of formal description techniques for OSI
communication protocols and services. From 1977 to 1978 he was a visit-
ing professor at the Ecole Polytechnique Federale, Lausanne, Switzerland.
From 1979 to 1980 he was a visiting professor in the Computer Systems
Laboratory, Stanford University, California. From 1986 to 1987 he was
a visiting researcher at Siemens, Munich. His present work is aimed at
methodologies for the design, implementation and testing of communi-
cation protocols and distributed systems. Ongoing projects include ap-
plications to high-speed protocols, distributed systems management and
quality of service negotiation for distributed multimedia applications. He
is a Fellow of the ACM.

Rachida Dssouli. Photograph and biography not available at time of
publication.

